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Abstract. This paper presents a simple iterative algorithm for computing an initial mesh
which interpolates the vertices of a target base-mesh in the limit under Catmull-Clark subdivi-
sion rules. It uses only local1-neighborhood information at each vertex of the target mesh, and
runs inO(nm) time wheren is the number of vertices in the base mesh andm is the number
of iterations. Sincem typically small gives interpolation to within acceptable tolerances, the
algorithm is effectivelyO(n), requiring only constant work for each base vertex to achieve
an almost-everywhereC2 interpolating surface. This algorithm is effective for interpolation
of closed, two sided meshes and assumes non-singularity of the underlying global splitting
matrix. While the argument presented is for Catmull-Clark subdivision, it may be trivially
extended to include Loop subdivision of tri-meshes as well. This method may be modified in
a quick-and-dirty fashion to interpolate boundary normals as well as positions at the desired
mesh points; unlike more sophisticated methods, however, no smoothing is done—the sur-
face will thus have “ripples”, fine-scale surface perturbations not implied by a coarse medial
sampling.

Keywords: surface fitting, mesh interpolation, subdivision surfaces, m-reps, medial modeling,
skeletal modeling

1. M-rep Boundary Description by Interpolating Subdivision Surfaces

[This paper is an excerpt from Chapter 4 ofDeformable Solid Modeling via Me-
dial Sampling and Displacement Subdivision, the Ph.D. thesis (in preparation)
of Andrew Thall at UNC-Chapel Hill. References to m-reps, sampled skeletal
modeling primitives, refer to this work.]

A sampled medial skeleton must be fleshed out by a surface which can
carry the fine-scale geometric information. The difficulties of fitting a bound-
ary based on medial interpolation and exact Blum medial correspondence
were discussed in Chapter 2. One alternative to continuous cm-reps is to use
an implicit surface representation, implicitizing the medial radius function;
this has some similarity to methods for rendering convolution surfaces and
was explored by Fletcher [7]. (See Fig. 1.) Implicit representations simplify
figure-subfigure blending, but have several drawbacks—they still require me-
dial resampling, as above, and present difficulties in parameterizing the sur-
face for medial correspondence and boundary displacement. The alternative
to a medial approach is to use the coarse medial sampling alone to derive
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2 Andrew Thall

the boundary, fitting a surface to the medially-implied boundary involutes.
Subdivision surfaces are ideal for these medially-implied boundaries for a
number of reasons:

− they allow surfaces of varying mesh connectivity and topology, requir-
ing less attention to special cases and continuity constraints than would
spline-based surface patches;

− they can interpolate boundary positions and normals for the known in-
volute positions of the medial atoms;

− they are a multiresolution surface representation, which fits in well with
the multiscale modeling paradigm of m-reps;

− they are a subject of much current research—including research on CSG-
style approximate Boolean operations—and are being implemented in
graphics APIs and rendering hardware.

This chapter discusses the creation and use of interpolating subdivision sur-
faces for m-rep boundaries. Section 2 describes a new, iterative algorithm for
interpolative subdivision and shows that it is equivalent to solving a linear
system for an interpolating Catmull-Clark subdivision surface. This method
is equally applicable to interpolating Loop subdivision on triangle meshes.
The section also discusses methods to interpolate normals and gives an error
metric (from the implied medial atoms) when normals are not interpolated.
Section 2.3 presents a method for directly computing limit positions for ir-
regular mesh vertices (i.e., with non-quadrangular face-neighbors), thus al-
lowing the new interpolation technique to be used on general closed meshes.
An appendix is included which discusses the subdivision algorithm and its
implementation.

2. Iteratively interpolating subdivision surfaces

The classic uniform, stationary subdivision surfaces—Doo-Sabin and Catmull-
Clark—are approximating subdivision techniques, as is Loop subdivision for
tri-meshes.1 Vertices at the coarsest level are linearly transformed at each
iteration to new locations, approaching their corresponding points on the limit
surface. They can be tranformed immediately to these limit points using a
modified subdivision matrix, and this is generally done after the surface mesh

1 A reminder on nomenclature:stationarysubdivision means that the same subdivision
rules are used at each subdivision level;uniformsubdivision means that the same set of rules
are used everywhere on the mesh. Non-stationary methods may be used to adjust surface
normals, as below; non-uniform methods may be used for forming cusps, edges and corners,
as per DeRose et al.
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FastC2 Interpolating Subdivision Surfaces 3

M-rep skeleta Implicit boundaries Blended boundaries

Figure 1. A figure-subfigure blend based on implicitizing the medial radius function. This
uses interpolated medial positions as centers of Gaussian density fields, and thus differs from
the implicit blending in Pablo (Fig.??) which is based on implicitizing theboundary, not the
medial radius function. (Tom Fletcher)

has been subdivided to adequate fineness, often adaptively based on boundary
curvature approximations.

For fairing of polyhedral objects—attempting to exactly fit a smooth sur-
face to known vertices and vertex normals—other methods have also been de-
veloped. Jorg Peters[12], for example, didC1 interpolation using piecewise-
bicubic patches for mesh-fitting, with linear normal-interpolation along patch
boundaries. Implicit techniques such as those of Bajaj and Ihm[1] create alge-
braic patches ofC1 continuity for closed polyhedra. Moreton and Séquin[11]
employed a functional optimization approach to flesh surfaces based on point,
normal, and curvature constraint sets.

Subdivision methods have risen to prominence, however, due to their con-
ceptual simplicity, their equivalence to spline-based surfaces away from ex-
traordinary points, and their requiring only minimal constraints on object-
topology and mesh connectivity. Surface interpolation is attainable by several
means. The Butterfly interpolation scheme of Dyn et al.[5] or the techniques
of Zorin[18] can giveC1 continuity on trimeshes subject to tension constraints
or other parameters. Halstead, Kass, and DeRose[9] employed a modified
Catmull-Clark technique to get interpolating subdivision of quadmesh struc-
tures, using thin-plate and membrane energies to constrain the subdivision
and interpolate both positions and normals at the desired boundary points.
The advantage of Catmull-Clark surfaces and others like them is that they are
almost everywhereC2 and have closed-form limit positions and limit normals
for vertices at any subdivision level. (See App. 3.)

2.1. INTERPOLATING CATMULL -CLARK BOUNDARIES

For m-rep surface-fitting, a technique like that of Halstead et al. would be sat-
isfactory but is in fact more exact than necessary—and pays for that exactness
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4 Andrew Thall

Figure 2. Medial mesh, boundary involutes and interpolating subdivision boundaries.

with its complexity and implementation details. What is needed instead is a
subdivision surface which creates a limit surface with boundary positions and
normals lying within the tolerance regions of the medial primitives. Such a
surface should beC2 as well, allowing displacements in the normal direction
to be limited by the radius of curvature in concave or saddle-shaped regions.
Such a technique has been developed for m-reps boundaries by means of an
iterative technique applied to the initial, coarse mesh of involute positions,
which gives approximately interpolating subdivision boundaries within the
desired tolerance. While the method has been applied to Catmull-Clark sub-
division, it would be effective for any subdivision method where the limit
masks can be simply computed for a local 1-neighborhood. Figures 2 and 3
show examples of this boundary-fitting.

The technique I developed for m-rep boundaries, like that of Halstead,
involves solving the linear system for an initial subdivision grid which will
produce limit positions interpolating the required boundary positions. Un-
like Halstead, however, it uses an iterative solution method, requiring only
1-neighborhoods of mesh vertices and producing successively closer approx-
imations to the involute positions by an algorithm which isO(m ·n), wheren
is the number of vertices being interpolated andm is the number of iterations.
In practice, with m small, this effectively adds a constant cost per coarse-level
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Figure 3. Near-interpolation of medial involutes by subdivision boundary.

mesh-vertex over the cost of non-interpolated subdivision using the same
mesh. The rest of this section will detail the theory and practice ofiterative
interpolating subdivision surfaces(IIS-surfaces).

2.2. IIS-SURFACES—REGULAR VERTICES

Consider first an initialregular vertex mesh—one with only quadrangular
faces. The iteratively interpolating subdivision surface (IIS-surface) is pro-
duced by creating a Catmull-Clark surface based on a modified initializing
vertex grid; this modified grid is created by the following algorithm:

1. Initialize a boundary meshv0
n with verticesvlimit

n of positions to be interpolated
2. For iterationi = 1 to m
3. For each vertexvi

j and its immediate edgeei
jk

and facef i
jk

neighbors
[k indexing into neighborhood (6- or 8-, typically) ofvi

j ]
4. Compute perturbationδj 3: vi

j + δj givesvlimit
j as its limit position,

based on currentei
jk

andf i
jk

5. Letvi+1
j = vi

j + 1
2δj

Step (4) is computed directly by solving the formula for the limit point given
a vertex and its neighbors in an intermediate-level mesh, as established in
Appendix 3. For a regular vertex of valence-n and its2n-neighborhood

[v, f1, f2, . . . , fn, e1, e2, . . . , en]

the limit point of Catmull-Clark subdivision is computed as

vlimit =
1

n(n + 5)

[
n2v +

n∑
k=1

[4ek + fk]

]
. (1)

Solving this for a perturbedv + δ to produce a desiredvlimit gives

v + δ =
n + 5

n

[
vlimit −

1
n(n + 5)

n∑
k=1

[4ek + fk]

]
. (2)
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Figure 4. Vertex labeling in a regular 1-neighborhood. Theei share an edge with the central
vertexv and thefi share a face.

(Fig. 4 shows the vertex labeling for a normal neighborhood.)
Thus, given a mesh of limit positions, a perturbed mesh could be pro-

duced by substituting the perturbedvi values. One would expect that such
a perturbed mesh would over-correct for the expected vertex shifts under
Catmull-Clark subdivision, since it ignores changes to a vertex’s neighbors
which would effect the actual subdivision. Therein the reasoning behind step
(5), where the perturbation is averaged betweenvi

j and the perturbedvi
j + δj .

The above equation thus yields the iteration

vi+1
j = vi

j +
1
2
δi
j

= vi
j +

1
2

[
n + 5

n

[
vlimit −

1
n(n + 5)

n∑
k=1

[4ek + fk]

]
− vi

j

]
(3)

for a vertexvj of valencen. While this looks like the proverbial hairy spider,
it actually amounts to a simple computation with a precomputed mask in the
local 1-neighborhood of each vertex, thus requiring only local connectivity
information on the initial involute mesh. Only one or two iterations produce
a good approximation to the desired boundary; the iterative process, in fact,
is computing a solution to the linear system defining the global problem by
performing a successive overrelaxation (SOR) on a Jacobi iteration. To see
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that this is so, for the global subdivision, express the problem of solving

~vlimit = A~v

= (D + U + L)~v

and thus, elementwise,

vlimitj = Aj~v

= (Dj + U j + Lj)~v
= Dj~v + (U j + Lj)~v

=
nj

nj + 5
vj +

1
nj + 5

n∑
k=1

[4ekj + fkj ]. (4)

for ~v, whereA is the (sparse) subdivision limit-surface matrix for the entire
mesh and~vlimit is the vector of mesh vertices to be interpolated. As defined,
each rowj of the matrixA computes the weighted sums in equation 2.2 for
thevj limit element of~vlimit . From thisA = (U + L + D) decomposesA into
its upper and lower triangular and its diagonal components, where theDj

component is the vertex weight for thevj vertex, and the[U j + V j ]~v gives
the weighted sum of the edge and face neighbors ofvj . Inverting this to solve
for vj + δj gives

vj + δj =
nj + 5

nj

[
vlimitj −

1
nj + 5

n∑
k=1

[4ekj + fkj ]

]

=
1

Dj

[
vlimitj − (U j + Lj)~v

]

and so, for the full linear system,

~v + ~δ = D−1 [~vlimit − (U + L)~v] (5)

where~δ is the vector of perturbationsδj for each respectivevj .
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8 Andrew Thall

Then, each iteration of equation 3 above can be combined in the matrix
expression

~v i+1 = ~v i +
1
2
~δ i

= ~v i +
1
2

[
D−1

[
~vlimit − (U + L)~v i

]
− ~v i

]
= ~v i +

1
2

D−1
[
~vlimit − (U + L)~v i − D~v i

]
= ~v i − 1

2
D−1

[
(U + L + D)~v i − ~vlimit

]
= ~v i − 1

2
D−1

[
A~v i − ~vlimit

]
= ~v i − 1

2
D−1~ξ i

= ~v i − ωD−1~ξ i

where~ξ i is the error residual vector for~v i. This is the canonical form for
an SOR on a Jacobi iteration, as discussed in Press et. al. [15], Strang [17],
and Golub and Van Loan [8]. (Actually, it is an underrelaxation, sinceω in
theωδj term is less than1.) For diagonally-dominant matrices—such as the
(implied) global subdivision matrix for a closed, two-sided m-rep boundary—
one expects good convergence for this method, and whileω = 1

2 was a pure
guess, the iteration converges so rapidly in test cases that no fine-tuning was
deemed necessary. (This matrix is not, however, diagonally dominant; a full
proof of convergence is still pending. For a start, the spectral radius is1, and
2nd and 3rd eigenvalues are0.5.)

To further illustrate this method, consider the cases of regular vertices of
valence3 and4. For an ordinary even vertex and its 8-neighborhood

[v, f1, f2, f3, f4, e1, e2, e3, e4]

the limit point of Catmull-Clark subdivision can be computed as

vlimit =
4
9
v +

1
9

∑
k

ek +
1
36

∑
k

fk (6)

and solving for a perturbedv + δ producing a givenvlimit gives

v + δ =
9
4

[
vlimit −

1
9

∑
k

ek −
1
36

∑
k

fk

]
. (7)

Similarly, for a valence-3 vertex with its 6-neighborhood, one has

vlimit =
3
8
v +

1
6

∑
k

ek +
1
24

∑
k

fk (8)
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FastC2 Interpolating Subdivision Surfaces 9

and thus

v + δ =
8
3

[
vlimit −

4
9

∑
k

ek −
1
9

∑
k

fk

]
. (9)

The formalae in equations??and??yield the iterations

vi+1
j = vi

j +
1
2
δi
j

= vi
j −

1
2

[
vi
j +

9
4

[
1
9

∑
k

ei
k +

1
36

∑
k

f i
k − vj limit

]]
(10)

and

vi+1
j = vi

j +
1
2
δi
j

= vi
j −

1
2

[
vi
j +

8
3

[
1
6

∑
k

ei
k +

1
24

∑
k

f i
k − vj limit

]]
(11)

for a vertexvj of valence3 or 4 respectively.
Special issues are raised by the presence of non-quad faces in the initial-

izing mesh. Given a vertex with adjacent faces with greater or fewer than 4
sides, one would like to avoid special cases in the formulae for inverting the
limit point equations, which themselves would have to be based on an altered
eigenstructure for the subdivision. Traditionally, limit positions at irregular
vertices are computed by first doing a single Catmull-Clark splitting and av-
eraging, which results in a regular mesh, and then applying the limit masks to
the new vertices. Instead, as will be shown below, it is possible toregularize
the neighborhood about a vertex to create a regular 1-neighborhood with the
same limit-structure. Given such a regularized neighborhood, the standard
limit-position and limit-tangent masks can be applied, and the above inver-
sions and iterative interpolation method can be applied without modification.
This technique will be discussed below.

2.3. IIS-SURFACES—IRREGULAR VERTEX LIMIT POSITIONS AND

INVERSES

Recall that anirregular mesh is one with non-quadrangular polygons, and
an irregular vertex is one at the corner of such a polygon. Because an initial
Catmull-Clark mesh (such as one produced by blending a figure and sub-
figure) may contain irregular vertices, it is necessary to compute their limit
points as well. This is frequently done in two stages:

1. a single Catmull-Clark split-and-average, after which all vertices are reg-
ular, followed by
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10 Andrew Thall

2. the application of the limit mask for a regular vertex at the level-2 ver-
tices.

This is inadequate for the needs of interpolating subdivision as developed
above, where the limit equations must be inverted for use in the iterative, SOR
interpolation scheme. Instead, going back to first principles for Catmull-Clark
subdivision, working again from Halstead et al.[9], one can directly compute
the limit point and tangent vectors for an irregular vertex (either ordinary or
extraordinary). There is no standard matrix form for the subdivision at a ver-
tex with an irregular one neighborhood. Instead, Catmull-Clark subdivision
proceeds equivalently in the following way.

1. New face verticesf i+1
1 , . . . , f i+1

n are created at the centroid (arithmetic
mean) of the bounding polygon vertices for each bounding faceF1, . . . , Fn.

2. New edge vertices are created

ei+1
j =

vi + ei
j + f i+1

j−1 + f i+1
j

4
. (12)

3. The new vertexvi+1 can now be computed as

vi+1 =
n− 2

n
vi +

1
n2

∑
j

ei
j +

1
n2

∑
j

f i+1
j (13)

After the initial splitting, the new mesh is and remains regular. In regards
vertex valences: extraordinary vertices will be created as new face-vertices of
non-quadrilateral polygons, but all subsequent splittings leave vertex valences
unchanged and create no new extraordinary vertices.

The thing to note from the above is that for a vertexv0 having an irreg-
ular 1-neighborhood, the new 1-neighborhood{v1, f1

1 , f1
2 , . . . , e1

1, e
1
2, . . . }

depends only on{v0, f1
1 , f1

2 , . . . , e0
1, e

0
2, . . . }—i.e., the only difference an

irregular mesh element makes is in the computation of thef1
i face vertices for

the respectiveFi polygons. Leto(Fi) be the number of vertices in polygon
Fi.

Theorem: Given Fi in a 1-neighborhood ofv0 and containing edges to
verticese0

i ande0
i+1. If o(Fi) 6= 4, a new polygonF ′

i can be constructed3:
(a) o(F ′

i ) = 4, (b) F ′
i containsv0 and the edge-verticese0

i ande0
i+1, and (c)

F ′
i has the same centroid asFi.

The proof is fairly trivial.2 If o(Fi) = n > 4, the vertices ofFi can
be ordered as{v0, ei, c1, c2, . . . , cn−3, ei+1}. Then it is necessary to find an

2 Feynman’s Observation: anything that can be proven is trivial.
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Figure 5. Regularizing the neighborhood of an irregular vertex.

F ′
i = {v0, ei, R, ei+1} having the samef1

i as its centroid, i.e.,

f1
i =

1
n

v0 + ei + ei+1 +
n−3∑
j=1

cj


=

1
4

[
v0 + ei + ei+1 + R

]
⇒

R =
4
n

n−3∑
j=1

cj

− n− 4
n

[
v0 + ei + ei+1

]
. (14)

For the caseo(Fi) = 3,

f1
i =

1
3

[
v0 + ei + ei+1

]
=

1
4

[
v0 + ei + ei+1 + R

]
⇒
R =

1
3

[
v0 + ei + ei+1

]
,

and the newR is simply the centroid of the three vertices inFi. (This is
simply Eqn. 14 for casen = 3, with

∑
cj nil, and not really a special case.)

Fig. 5 gives an illustration of the process.
Corollary: An irregular 1-neighborhood of a vertexv0 can be replaced by

a regular neighborhood producing the same{v1, f1
1 , f1

2 , . . . , e1
1, e

1
2, . . . } and

therefore having the same limit structure (position and tangent space) in the
neighborhood ofv∞.

This follows directly by applying the above method to all irregular poly-
gons adjoining a vertex, given the known facts:
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12 Andrew Thall

1. the level-(n + 1) 1-neighborhood for an ordinary or extraordinary vertex
vn+1 is determined completely byvn, by the level-n edge verticesen

i ,
and by the level-(n + 1) face verticesfn+1

i ;

2. the limit structure can be derived explicitly by eigenanalysis, given a
regular 1-neighborhood about an ordinary or extraordinary vertex.

This, then, allows limit positions to be determined directly from the initial
mesh positions, in turn allowing the SOR iterative technique to be used to
interpolate original mesh positions for irregular vertices just as for regular
ones.

2.4. ERROR METRICS FORIIS-SURFACES VS. MEDIALLY -IMPLIED

BOUNDARIES

IIS-surfaces do not interpolate mesh normals; thus, the~v1, ~v2, and~b vectors
of the medial atoms defining the mesh of boundary involutes will not match
the surface normals of the interpolating subdivision meshes. The degree of
mismatch can, in fact, be arbitrarily bad. In most cases, the mesh topology for
the closed surface at the coarsest scale produces surface normalsacceptably
near to the values implied by the medial atoms. Fully interpolating surface
subdivision, as typified by Halstead, require extra conditions to prevent rip-
pling effects on interpolating surfaces. Because the interpolation mesh for an
m-rep is computed only for the coarsely sampled, medially-implied boundary,
and because the normals are not specified explicitly, the smoothing inherent
in stationary subdivision is sufficient to avoid such rippling in typical cases. A
method of as-needed normal interpolation will be explored below; this is fast
and simple, but lacks the fine control of methods which also include bending-
energy minimization, and tends to exacerbate the problem of ripples, which
must then be eliminated using small-scale boundary-texturing displacements.

To produce an as-needed normal-adjusting method, a method is first re-
quired to quantify the deviation of surface normals from medially-implied
normals, and a non-stationary modification to the subdivision algorithm will
be proposed to handle such cases. There is perhaps no reason not to use
more general interpolating subdivision schemes, if one is willing to trade off
the speed and simplicity of the IIS-surfaces for more control over boundary
curvature. This may amount to spending a lot to achieve thatoverprecision
that m-reps are intended to avoid.

There needs to be a measure for the goodness of fit of the iterative subdivi-
sion boundary to the surface implied by the medial atoms. While the boundary
should only need to be specified within tolerances, it is important to be able to
state that this is in fact the case. Taking astruth the known boundary locations
and their normals as implied by the involute vectors of the sampled atoms,
there are several relevant metrics:
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FastC2 Interpolating Subdivision Surfaces 13

1. measurement of the distance from the original involute endpoints of each
of their initializing positions in the coarse-level mesh, scaled byr;

2. measurement of the rotationθ from an original involute normal to the
subdivision boundary normal;

3. measurement of the shift from a known medial locationp to a new one
based on creating a new medial atom from associated boundary locations
and normals.

Metric (1) can be used to determine how many iterations are needed to ap-
proximate the medially-implied boundary. Metric (2) can be used to deter-
mine if and where a non-stationary normal-interpolation method should be
applied to the subdivision mesh. Metric (3) is based on the involute-to-average-
medial-atom technique presented in the last chapter. (Recall Fig.??.) The
distance of displacement of the old medial locationp from the new (inr-
proportional terms) gives a measure of how poorly the coarse medial sam-
pling fits the interpolating surface in a Blum-sense. An alternative to adjusting
the normals of the subdivision mesh (as described below) might be to modify
instead the medial atom, using the approximately Blum atom generated for
the test.

2.5. ACCURATE NORMAL INTERPOLATION USING MODIFIED

IIS-SURFACES

In many cases, the basic topology and structure of the coarse involute mesh
guides the subdivision to approximately correct normal values. Nonetheless,
without a boundary fit that incorporates the surface normals implied by the
medial atoms, the m-rep medial atom to boundary-implied medial atom error
can be made arbitrarily bad. Using the above metric on normal deviation, it is
simple to identify if and where this occurs. For such situation, I have created
a quick and not-too-dirty method to interpolate the normal at a given loca-
tion, using a non-stationary, non-uniform modification to the interpolating
subdivision algorithm.Given: an initial mesh of medially-implied boundary
involutesvn with implied normals~nn.

1. Construct a level-0 IIS-surface mesh of verticesv0
n that givevlimit

n ≈ vn

under Catmull-Clark subdivision.
2. Subdivide twice to get verticesv2

n and their level-2 1-neighborhoods.
3. Computevlimit

n and~nlimit
n .

4. Fori = 1 to n do
5. If ~nlimit

i is acceptable close to~ni, Done.
6. Else, compute the rotationRi ∈ SO(3) taking the vector~nlimit

i to ~ni.
7. Rotatev2

i and its entire 1-neighborhood byRi aboutvlimit
i .

8. Substitute these rotated vertices into thev2
n mesh.
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14 Andrew Thall

The resulting modifiedv2
n mesh will interpolate the normals for the limit

positions of the modified vertices. The proof of this is trivial, resting on three
facts:

− local 1-neighborhoods of initial vertices are disjoint after 2 subdivisions;

− a vertex’s limit-surface position and normal depend only on the 1-neighborhood
of that vertex;

− subdivision is rotationally invariant, allowing the rotation of the limit
normal to be achieved by rotating the subdivision neighborhood by the
same amount about the limit point while keeping that limit point un-
changed.

It is a strength of this method that it is applied on anas neededbasis, and that
it requires only anO(1) operation for those of then initial vertices requiring
modification, adding at worstO(n) operations overall (forn typically small).
Further, the interpolation can be appliedin-place on a subdivision mesh,
modifying only the independent 1-neighborhoods about the selected mesh
positions.

Fig. 6 shows an m-rep boundary generated by this algorithm; the polyg-
onal outlines show where the underlying subdivision mesh was perturbed to
match normals in the neighborhoods of the sampled medial involutes. Fig. 7
compares a bone (in a pelvic-region model) with boundary generated by both
normal-interpolating and non-normal-interpolating IIS-surfaces. While nor-
mal interpolation produces a more detailed boundary, the detail seen could
alternatively be provided by boundary displacements on the less detailed sur-
face. The advantage of the normal interpolating method is that the sampled
medial atoms now form an accurate Blum-medial location for the generated
boundary and thus provide the correct∇r information for a sampled medial
representation. The interpolation provided by the non-normal-interpolating
surface is effectively for a chordal axis, since the 1st-order information pro-
vided by the medial atom is ignored.

This method is subject to the same potential difficulties with surface rip-
ples that afflict other subdivision techniques which interpolate normals. For
m-rep modeling, however, the coarseness of the medial sampling (which de-
fines the initial subdivision mesh) alleviates much of this problem. For non-
m-rep modeling, it might be useful to space the rotation out over several sub-
division steps to give a smoother interpolation—this is similar to a technique
developed by Biermann[2]. It is also possible that ripples can be reduced
by doing aminimalperturbation so that the boundary normal is just within a
specified tolerance without being exactly interpolating. Can also do a smooth-
ing on the mesh after the perturbation ofv2 and its neighborhood. Since there
is a ring of unperturbed vertices around each perturbed neighborhood, these
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Figure 6. An m-rep boundary generated by normal-interpolating IIS-surfaces. The polygonal
regions show the perturbation of 1-neighborhoods in the underlying subdivision mesh to match
boundary normals at the sampled medial involutes.

(a) (b)

Figure 7. A bone modeled(a) by normal-interpolating and(b) by non-normal interpolating
IIS-surfaces.
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16 Andrew Thall

can be averaged by their neighbors to reduce possible rippling. Such non-
stationary methods can get arbitrarilyad hocand may become pointlessly
rococo. As alternatives, there remain the general interpolating subdivision
schemes such as Halstead’s or Biermann’s that give more precise surface con-
trol. For m-reps, however, the above scheme is effective and computationally
cheap.

2.6. INTERPOLATION OF OTHER BOUNDARY ATTRIBUTES

The usefulness of a medially-defined coordinate system was discussed in the
previous chapter in Sec.??. It is necessary, therefore, to interpolate me-
dial coordinates from known involute positions on the boundaries, and to
interpolate approximate values ofr as well. The standard practice for tex-
ture coordinate interpolation on subdivision surfaces is to split the texture
coordinates at the same time the mesh itself is split. Typically, texture coordi-
nates will be subdivided using the same splitting and perturbation scheme as
for the vertices (DeRose[3]); this gives2nd order continuity to the surface
coordinates. However, for an interpolating surface such as an m-rep, this
results in “coordinate-creep”, with values shifting from their known values
at interpolated positions.

Instead, a simple midpoint subdivision rule has been used instead forr and
(u, v, t) coordinates, leaving values unchanged at even vertices. The values
at odd edge-vertices are the average of the even endpoints, and the values at
odd face-vertices are the average of the even face vertices. This does have
the drawback of giving only0-th order continuity of the coordinate fields on
the surface; this has not proven to be a sticking point for any of the current
research.

Another possibility is to use the same IIS-surface scheme on the surface
coordinates; this would still produce coordinate-creep near known locations
subject to the number of iterations of the approximation. If continuous co-
ordinate fields are needed, though, this is the most straightforward way to
achieve them.

It is important to note that the interpolatedr-field on the surface is only an
approximation to the true medial radius function on the surface. It is, however,
well-defined, and it provides a good approximation for determining width-
proportional tolerances at boundary locations. This will be discussed in the
next chapter in Sec.??. Also note that, while subdivision-based coordinate
interpolation allows coordinates to be assigned to all mesh vertices at any
level, it does not solve the problem of finding an(x, y, z) location in space
corresponding to an arbitrary(u, v, t). Methods for this will be discussed in
detail in Sec.??, but basically involve linearly interpolating vertex parameter
values across tiled boundaries at a subdivision level deemed suitably fine.
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2.7. DRAWBACKS AND LIMITATIONS OF IIS-SURFACES

There are a number of drawbacks to the use of such subdivision surfaces for
m-rep boundaries. They lack explicit parameterizations, and thus,likewise,
closed-form surface curvatures, principal directions, and fundamental forms,
which would be useful for doing differential geometry on them. One can fit
splines to regular regions or do Stam-style parameterization[16]; one might
use methods of J̈org Peters and Georg Umlauf for finding Gaussian and mean
curvature of subdivision surfaces[13, 14], or tricks on the surface mesh ver-
tices as per Desbrun et al. at Caltech Multi-Res Modeling Group[4]. It re-
mains a fact that analysis on subdivision boundaries is non-trivial.

These are drawbacks forall subdivision surfaces. There is a drawback
particular to iteratively interpolating subdivision surfaces. A standard trick
for putting edges and creases in Catmull-Clark or other subdivision surfaces
is to “freeze” certain vertices and edges in the mesh, allowing averaging only
along a restricted set of mesh edged or not at all. This method cannot be
applied directly to the modified meshes produced by IIS-surfaces; it might be
possible to freeze vertices and edges in the initial mesh and not do inverse
interation there, but I suspect that this will produce undesirable artifacts.
Boundary displacement, as discussed in the next chapter, makes vertex/edge
freezing less necessary; whether it eliminates the need entirely remains to be
seen.

Another disadvantage of IIS-surfaces—as opposed to a global least-squares
approach to subdivision surface interpolation such as that of Halstead—is that
the method requires that the (implicit) subdivision matrix be non-singular.
While this might limit IIS-surface use in general modeling tasks, m-rep-
generated boundary meshes always have closed, two-sided topology and the
subdivision equations are therefore invertible. The simplicity and adjustable
tolerance of IIS-surface fitting makes it preferable in this and similar cases.

Another drawback common to all surface-fitting by stationary subdivision
is that the surface-fit is essentially a bicubic-spline interpolation, restricting
the boundary curvature behavior accordingly. Thus, as Fig. 8 illustrates, a
surface fit to an endcap (the mostly highly curved region, typically) may
have undesirable wiggles. The use of the edge-atomη-elongation can resolve
this, or a boundary perturbation might do likewise; as a last recourse are the
subdivision-surface-fitting algorithms with boundary curvature constraints,
such as Halstead’s.

A final note on IIS-surfaces: a careful reading of Farin [6](Pg. 125) reveals
a discussion of just such an iterative approach for b-spline interpolation,
though without the above modifications for normal interpolation. Since a
Catmull-Clark surface is almost everywhere a bicubic b-spline, it is natural
that such an approach should be applicable to the subdivision surfaces as well.
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Figure 8. An endcap interpolated using interpolating IIS-surfaces. On the left, withη = 1,
the surface has typical cubic-spline wiggling. On the right,η has been adjusted and the medial
atom moved to eliminate the effect.
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3. Appendix: Limit Positions on Subdivision Surfaces

Limit positions and tangent vectors (and thus normals) can be computed for
initial even vertices of a subdivision mesh by weighted averages of their lo-
cal n-neighborhood with appropriately computed masks. For stationary sub-
division methods (such as Loop and Catmull-Clark), these masks can be
computed by eigenanalysis of the single splitting matrix for vertices of the
given valence. A good discussion of this for Catmull-Clark subdivision can be
found in Halstead et al.[9] The computation in this chapter is for the specific
cases related to the subdivision code in Rakshasa and in Pablo/Seurat. The
extended discussion and numerical tests in Sec. 3.1 and 4 were done for my
own edification to ensure correct understanding of the mathematics.

3.1. LIMIT POSITIONS FOR REGULAR, VALENCE-4 VERTICES

For this discuss, aregular vertex is one which is has only quad neighbors,
rather than the arbitrary polygonal neighbors allowed at the first stage of
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Catmull-Clark subdivision.3 (Computing limit positions of irregular vertices
is more complicated but not different in essence. One first regularizes the
local neighborhood; this is discussed in Thall[2003].) Consider a regular,
level-i vertexvi

0 and its 8-neighborhood as a 9-vector

~V i = [vi
0, f

i
1, f

i
2, f

i
3, f

i
4, e

i
1, e

i
2, e

i
3, e

i
4]

T

along with the associated subdivided vertexvi+1
0 and its neighbors

~V i+1 = [vi+1
0 , f i+1

1 , f i+1
2 , f i+1

3 , f i+1
4 , ei+1

1 , ei+1
2 , ei+1

3 , ei+1
4 ]T

arranged as in Figure 9. A single Catmull-Clark splitting operation gives the
relationship~V i+1 = S~V i, where the splitting matrix

S =
1
16



9 1
4

1
4

1
4

1
4

3
2

3
2

3
2

3
2

4 4 0 0 0 4 0 0 4
4 0 4 0 0 4 4 0 0
4 0 0 4 0 0 4 4 0
4 0 0 0 4 0 0 4 4
6 1 1 0 0 6 1 0 1
6 0 1 1 0 1 6 1 0
6 0 0 1 1 0 1 6 1
6 1 0 0 1 1 0 1 6


is based on the masks for even and odd vertices with standard weights. (See
Fig. 10.)

The masks for computing the limit positionV ∞
0 and vectors in the tangent

plane of the limit surface at this point can be found by computing the left-
eigenvectors and eigenvalues of the splitting matrix. (For a proof of this, see
Halstead[9]. From the theory,λ1 = 1 and its corresponding eigenvector is

l1 =
1

n(n + 5)
[n2, 1, . . . , 1, 4, . . . , 4]T .

Also from the theory, eigenvaluesλ2 = λ3 = 4+An
16 , whereAn is defined

below in Eq. 15, for vertices of valencen.

3 Don’t confuse this withordinary vs. extraordinary vertex, which refers only to the
valence, the number of connected mesh-neighbors.
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Figure 9. Vertex and its 8-neighborhood (in red) and related subdivided vertices (in black).
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4

Odd Face Odd Edge Even Vertex
Figure 10. Subdivision masks for odd and even vertices (of valence 4).

Using MATLAB, numerical eigenanalysis produced eigenvaluesλ1 =
1.0, andλ{2,3} = 0.5 as expected. For left eigenvectors, I found

l1 =
1
36



16
1
1
1
1
4
4
4
4


, l2 =



0.0
−0.02063816984618
−0.47936183015382
0.02063816984618
0.47936183015382

−1.0
−0.91744732061529

1.0
0.91744732061529


, l3 =



0.0
0.47385759580580
−0.02614240419420
−0.47385759580580
0.02614240419420
0.89543038322319

−1.0
−0.89543038322319

1.0


.
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The l1 eigenvector is in accord with the limit weights for the limit vertex
as given in Halstead et al. Becauseλ2 = λ3, the l2 and l3 vectors are non-
unique; using Fourier methods, Halstead’s folk analytically derived formulae
for limit tangent vectors as

c2 =
∑
j

An cos(
2πj

n
)e1

j + (cos(
2πj

n
) + cos(

2π(j + 1)
n

))f1
j

c3 =
∑
j

An cos(
2πj

n
)e1

j+1 + (cos(
2πj

n
) + cos(

2π(j + 1)
n

))f1
j+1

where

An = 1 + cos(
2π

n
) + cos(

π

n
)
√

2(9 + cos(
2π

n
)) (15)

wheren is the valence, andj is the edge/face index modulon + 1. From
these, for valence-4 vertices one can compute neighborhood masks of

m2 =



0
−1
−1
1
1
−4
0
4
0


, m3 =



0
1
−1
−1
1
0
−4
0
4


.

These lie in the span of thel2 and l3 vectors derived from the numerical
eigenanalysis ofS and are sweet and gracious, entirely more pleasant for
computational purposes. (Another source, Havemann[10], gives masksm2 =
[0, 1, 1,−1,−1, 1, 0,−1, 0] andm3 = [0, 0, 2, 0,−2, 1, 1,−1,−1]. These ap-
pear to be incorrect in not lying in the subspace spanned by the eigenvectors
corresponding to the second and third eigenvalues. It is possible that they are
using different weights in their splitting matrix.)

4. Limit positions for regular, valence-3 vertices

Similarly to above, consider a level-i vertexvi
0 and its 6-neighborhood as a

7-vector
~V i = [vi

0, f
i
1, f

i
2, f

i
3, e

i
1, e

i
2, e

i
3]

T

along with the associated subdivided vertexvi+1
0 and its neighbors

~V i+1 = [vi+1
0 , f i+1

1 , f i+1
2 , f i+1

3 , ei+1
1 , ei+1

2 , ei+1
3 ]T
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Even Vertex
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Figure 11. Subdivision mask for even vertex of valence 3.

arranged as in Figure 9. A single Catmull-Clark splitting operation gives the
relationshipS~V i = ~V i+1, where the splitting matrix

S =
1
12



5 1
3

1
3

1
3 2 2 2

3 3 0 0 3 0 3
3 0 3 0 3 3 0
3 0 0 3 0 3 3
9
2

3
4

3
4 0 9

2
3
4

3
4

9
2 0 3

4
3
4

3
4

9
2

3
4

9
2

3
4 0 3

4
3
4

3
4

9
2


is based on the masks for even mask as shown in Fig. 11, with the same odd
vertex weights as in Fig. 10.

The masks for computing the limit position and tangent vectors on the
limit surface are found once again by computing the left-eigenvectors and
eigenvalues of the splitting matrix.

Using MATLAB, numerical eigenanalysis produced eigenvaluesλ1 =
1.0, andλ{2,3} = 0.4109705080055, which indeed matches the analytically

predictedλ{2,3} = 9+
√

17
32 . For left eigenvectors, I found

l1 =
1
24



9
1
1
1
4
4
4


, l2 =



0.0
−0.29639444898437
0.16358333275582
0.13281111622855
−0.34020268834752
0.75923003449683
−0.41902734614931


, l3 =



0.0
−0.10092784247726
−0.19137106863820
0.29229891111546
−0.74873909794875
0.25853199878834
0.49020709916041


.
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Thel1 eigenvector once again is in accord with the weights for the limit vertex
as given in Halstead and thel2 andl3 again span a subspace of acceptable vec-
tors including those computed analytically; by the same formulae evaluated
for n=3,

c2 =
∑
j

A3 cos(
2πj

3
)e1

j + (cos(
2πj

3
) + cos(

2π(j + 1)
3

))f1
j

c3 =
∑
j

A3 cos(
2πj

3
)e1

j+1 + (cos(
2πj

3
) + cos(

2π(j + 1)
3

))f1
j+1

where

A3 = 1 + cos(
2π

3
) + cos(

π

3
)
√

2(9 + cos(
2π

3
))

From these, for valence-3 vertices one can extract neighborhood masks of

m2 =



0
−4
2
2

−1−
√

17
2 + 2

√
17

−1−
√

17


, m3 =



0
2
2
−4

2 + 2
√

17
−1−

√
17

−1−
√

17


.

These, once again, are computationally cleaner than thel2 andl3 masks de-
rived from the numerical eigenanalysis. (Note thatm2×m3 gives theinward
pointing normal, som3 ×m2 is the correct surface normal.)

4.1. LIMIT MASKS FOR REGULAR VERTICES—GENERAL CASES

Since the limit position masks are necessary (to be inverted) for interpolating
subdivision as they will be computed here and tabulated for valencesn ≤ 12
using Halstead’s formula. As given in Sec. 3.1, the formula for the limit point
of a regular vertex of valencen is

l1 =
1

n(n + 5)
[n2, 1, . . . , 1, 4, . . . , 4]T .

and the formulae for the tangents are

c2 =
∑
j

An cos(
2πj

n
)e1

j + (cos(
2πj

n
) + cos(

2π(j + 1)
n

))f1
j

c3 =
∑
j

An cos(
2πj

n
)e1

j+1 + (cos(
2πj

n
) + cos(

2π(j + 1)
n

))f1
j+1
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Table I. Limit vector masks for regular ex-
traordinary points.

Valence Limit vector mask

3 1
24

[9, 1, 1, 1, 4, 4, 4]T

4 1
36

[16, 1, 1, 1, 1, 4, 4, 4, 4]T

5 1
50

[25, 1, 1, 1, 1, . . . , 4, 4, 4]T

6 1
66

[36, 1, 1, 1, 1, . . . , 4, 4, 4]T

7 1
84

[49, 1, 1, 1, 1, . . . , 4, 4, 4]T

8 1
104

[64, 1, 1, 1, 1, . . . , 4, 4, 4]T

9 1
126

[81, 1, 1, 1, 1, . . . , 4, 4, 4]T

10 1
150

[100, 1, 1, 1, 1, . . . , 4, 4, 4]T

11 1
176

[121, 1, 1, 1, 1, . . . , 4, 4, 4]T

12 1
204

[144, 1, 1, 1, 1, . . . , 4, 4, 4]T

Table II. Valence-3 tangent mask weights.

c2 limit vector mask c3 limit vector mask

f1 −4 2

f2 2 2

f3 2 −4

e1 −1−
√

17 2 + 2
√

17

e2 2 + 2
√

17 −1−
√

17

e3 −1−
√

17 −1−
√

17

where

An = 1 + cos(
2π

n
) + cos(

π

n
)
√

2(9 + cos(
2π

n
)) (16)

wherej is the edge/face index modulon + 1. Using these equations, the
limit point masks for regular points with valencesn ≤ 12 are tabulated
in Table 4.1. The tangent masks can be computed as needed by the above
formulae, as in then = 3 andn = 4 cases in Tables 4.1 and 4.1. Note that
these are in{f1, e1, f2, e2, . . . } counterclockwise order, as per the standard
in Seurat, rather than ordered{e1, f1, e2, f2, . . . } as in Halstead; e.g., for the
valence3 vertex in Table 4.1, thee1 in the table is actually thee2 value from
the formulae,e2 is actuallye3 from the formula, ande3 is e1, and similar for
the other valances computed by the formulae. Thefi values are as per the
formula values.
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Table III. Valence-4 tangent mask weights.

c2 limit vector mask c3 limit vector mask

f1 −1 1

f2 −1 −1

f3 1 −1

f4 1 1

e1 −4 0

e2 0 −4

e3 4 0

e4 0 4

5. Inverse limit points for extraordinary vertices

The equations for inverse limit positions for valence-3 and valence-4 vertices
were derived in Thall[2003]. Reiterating here: the interpolating surface is
produced by creating a Catmull-Clark surface based on a modified initializing
vertex grid; this modified grid is created by the following algorithm:

1. Initialize a boundary meshv0
n with verticesvlimit

n of positions to be interpolated
2. For iterationi = 1 to m
3. For each vertexvi

j and its immediate edgeei
jk

and facef i
jk

neighbors
[k indexing into neighborhood ofvi

j ]
4. Compute perturbationδj 3: vi

j + δj givesvlimit
j as its limit position,

based on currentei
jk

andf i
jk

5. Letvi+1
j = vi

j + 1
2δj

Step [4] is computed directly by inverting the limit formulae as given
above in Table 4.1. This section will derive the general form for these inverses
and give the iterative equations for Step [5] for the valences3–12.

For a regular vertex of valence-n and its2n-neighborhood

[v, f1, f2, . . . , fn, e1, e2, . . . , en]

the limit point of Catmull-Clark subdivision is computed as

vlimit =
1

n(n + 5)

[
n2v +

n∑
k=1

[4ek + fk]

]
(17)

and solving for a perturbedv + δ producing a givenvlimit gives

v + δ =
n + 5

n

[
vlimit −

1
n(n + 5)

n∑
k=1

[4ek + fk]

]
. (18)
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Thus, given a mesh of limit positions, a perturbed mesh could be pro-
duced by substituting thesevi values. One would expect that such a perturbed
mesh would over-correct for the expected vertex shifts under Catmull-Clark
subdivision, since it ignores changes to a vertex’s neighbors which would
effect the actual subdivision. Therein the reasoning behind step [5], where
the perturbation is averaged betweenvi

j and the perturbedvi
j + δj . The above

equation thus yields the iteration

vi+1
j = vi

j +
1
2
δi
j

= vi
j +

1
2

[
n + 5

n

[
vlimit −

1
n(n + 5)

n∑
k=1

[4ek + fk]

]
− vi

j

]
(19)

for a vertexvj of valencen. Only one or two iterations often produce a
good approximation to the desired boundary; the iterative process, in fact,
is computing a solution to the linear system defining the global problem by
performing a successive overrelaxation (SOR) on a Jacobi iteration. (Actually,
it is an underrelaxation, sinceω in the ωδj term is less than1.) To see that
this is so: for the global subdivision, express the problem as solving

A~v = ~vlimit

for ~v, whereA is the (sparse) subdivision limit-surface matrix for the entire
mesh and~vlimit is the vector of mesh vertices to be interpolated. As defined,
each rowj of the matrixA computes the weighted sums in the above equa-
tions for thevj limit element of~vlimit . LetA = (U+L +D) be a decomposition
of A into its upper and lower triangular and its diagonal components.

Then, each iteration of the iteration equations above can be combined in
the matrix expression

~v i+1 = ~v i +
1
2
~δ i

= ~v i +
1
2

[
D−1

[
~vlimit − (U + L)~v i

]
− ~v i

]
= ~v i +

1
2

D−1
[
~vlimit − (U + L)~v i − D~v i

]
= ~v i − 1

2
D−1

[
(U + L + D)~v i − ~vlimit

]
= ~v i − 1

2
D−1~ξ i

= ~v i − ωD−1~ξ i

where~ξ i is the error residual vector for~v i. This is the canonical form for
an underrelaxation on a Jacobi iteration, as discussed in Press et. al. [15],
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Strang [17], and Golub and Van Loan [8]. For diagonally-dominant matrices—
such as our (implied) global subdivision matrix—one expects good conver-
gence for this method, and whileω = 1

2 was a pure guess, the iteration
converges so rapidly in test cases that no fine-tuning was deemed necessary.

5.1. AN IMPLEMENTATION AID FOR CATMULL -CLARK MESHES

From Halstead et al.[9], the algorithm for Catmull-Clark subdivision proceeds
in the following way.

1. New face verticesf i+1
1 , . . . , f i+1

n are created at the centroid (arithmetic
mean) of the bounding polygon vertices for each bounding face.F1, . . . , Fn.

2. New edge vertices are created

ei+1
j =

vi + ei
j + f i+1

j−1 + f i+1
j

4
. (20)

3. The new vertexvi+1 can now be computed as

vi+1 =
n− 2

n
vi +

1
n2

∑
j

ei
j +

1
n2

∑
j

f i+1
j (21)

One way to perform such a splittingin-placeis create the new mesh in the
following manner.

1. Create the new mesh of nodes, labeling each as one of{even, odd-face,
odd-edge}, and computing local 1-neighborhoods for each vertex.

2. For each even nodevi+1, copy the parentvi node information.

3. Compute each odd facef i+1 as the centroid of its face-neighbors, which
are simply the 4 (or valence-n)vi values as copied over from the parent
mesh.

4. Compute each odd-edgeei+1 as the centroid of its edge-neighbors, which
are simply the 2vi values and the 2 newf i+1 values.

5. Compute new values for thevi+1, again using only local 1-neighborhood
information, by modifying Eq. 21.
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The modification is done simply by solving Eq. 20 forei
j and substituting this

into the last equation to get

vi+1 =
n− 2

n
vi +

1
n2

∑
j

[4ei+1
j − vi − f i+1

j+1 − f i+1
j ] +

1
n2

∑
j

f i+1
j

=
n− 2

n
vi − 1

n2
vi +

1
n2

∑
j

[4ei+1
j − f i+1

j−1]

=
1
n2

(n2 − 3n)vi +
∑
j

[4ei+1
j − f i+1

j ]

 . (22)
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